Calcul infinitésimal Exemples

Resolva para x (1.1x- racine carrée de x^2+9)/( racine carrée de x^2+9)=0
Étape 1
Réalisez le produit en croix.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réalisez un produit en croix en définissant le produit du numérateur du côté droit et du dénominateur du côté gauche égal au produit du numérateur du côté gauche et du dénominateur du côté droit.
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Supprimez les parenthèses.
Étape 1.2.1.2
Multipliez par .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 3
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 4
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Utilisez pour réécrire comme .
Étape 4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Appliquez la règle de produit à .
Étape 4.2.1.2
Élevez à la puissance .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.1.4
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.4.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.1.4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.4.2.1
Annulez le facteur commun.
Étape 4.2.1.4.2.2
Réécrivez l’expression.
Étape 4.2.1.5
Simplifiez
Étape 4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Appliquez la règle de produit à .
Étape 4.3.1.2
Élevez à la puissance .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Soustrayez des deux côtés de l’équation.
Étape 5.1.2
Soustrayez de .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Divisez par .
Étape 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Excluez les solutions qui ne rendent pas vrai.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :