Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Étape 2.1
Associez en une fraction.
Étape 2.1.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.2
Simplifiez le numérateur.
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Développez à l’aide de la méthode FOIL.
Étape 2.2.2.1
Appliquez la propriété distributive.
Étape 2.2.2.2
Appliquez la propriété distributive.
Étape 2.2.2.3
Appliquez la propriété distributive.
Étape 2.2.3
Simplifiez et associez les termes similaires.
Étape 2.2.3.1
Simplifiez chaque terme.
Étape 2.2.3.1.1
Multipliez par .
Étape 2.2.3.1.2
Multipliez par .
Étape 2.2.3.1.3
Multipliez par .
Étape 2.2.3.1.4
Multipliez par .
Étape 2.2.3.2
Additionnez et .
Étape 2.2.4
Additionnez et .
Étape 3
Multipliez les deux côtés de l’équation par .
Étape 4
Étape 4.1
Simplifiez le côté gauche.
Étape 4.1.1
Annulez le facteur commun de .
Étape 4.1.1.1
Annulez le facteur commun.
Étape 4.1.1.2
Réécrivez l’expression.
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Annulez le facteur commun de .
Étape 4.2.1.1.1
Factorisez à partir de .
Étape 4.2.1.1.2
Factorisez à partir de .
Étape 4.2.1.1.3
Annulez le facteur commun.
Étape 4.2.1.1.4
Réécrivez l’expression.
Étape 4.2.1.2
Associez et .
Étape 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6
Étape 6.1
Réécrivez comme .
Étape 6.1.1
Factorisez la puissance parfaite dans .
Étape 6.1.2
Factorisez la puissance parfaite dans .
Étape 6.1.3
Réorganisez la fraction .
Étape 6.2
Extrayez les termes de sous le radical.
Étape 6.3
Élevez à la puissance .
Étape 6.4
Associez et .
Étape 7
Étape 7.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.2
Soustrayez des deux côtés de l’équation.
Étape 7.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.4
Soustrayez des deux côtés de l’équation.
Étape 7.5
La solution complète est le résultat des parties positive et négative de la solution.