Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Associez en une fraction.
Étape 2.1.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.2
Simplifiez le numérateur.
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.2.3
Simplifiez
Étape 2.2.3.1
Soustrayez de .
Étape 2.2.3.2
Appliquez la propriété distributive.
Étape 2.2.3.3
Multipliez par .
Étape 2.2.3.4
Additionnez et .
Étape 2.3
Simplifiez en factorisant.
Étape 2.3.1
Factorisez à partir de .
Étape 2.3.2
Réécrivez comme .
Étape 2.3.3
Factorisez à partir de .
Étape 2.3.4
Simplifiez l’expression.
Étape 2.3.4.1
Réécrivez comme .
Étape 2.3.4.2
Placez le signe moins devant la fraction.
Étape 3
Multipliez les deux côtés de l’équation par .
Étape 4
Étape 4.1
Simplifiez le côté gauche.
Étape 4.1.1
Annulez le facteur commun de .
Étape 4.1.1.1
Annulez le facteur commun.
Étape 4.1.1.2
Réécrivez l’expression.
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Annulez le facteur commun de .
Étape 4.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 4.2.1.1.2
Factorisez à partir de .
Étape 4.2.1.1.3
Factorisez à partir de .
Étape 4.2.1.1.4
Annulez le facteur commun.
Étape 4.2.1.1.5
Réécrivez l’expression.
Étape 4.2.1.2
Associez et .
Étape 4.2.1.3
Simplifiez l’expression.
Étape 4.2.1.3.1
Multipliez par .
Étape 4.2.1.3.2
Placez le signe moins devant la fraction.
Étape 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6
Étape 6.1
Réécrivez comme .
Étape 6.1.1
Factorisez la puissance parfaite dans .
Étape 6.1.2
Factorisez la puissance parfaite dans .
Étape 6.1.3
Réorganisez la fraction .
Étape 6.1.4
Remettez dans l’ordre et .
Étape 6.1.5
Ajoutez des parenthèses.
Étape 6.1.6
Ajoutez des parenthèses.
Étape 6.2
Extrayez les termes de sous le radical.
Étape 6.3
Associez et .
Étape 7
Étape 7.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.2
Ajoutez aux deux côtés de l’équation.
Étape 7.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.4
Ajoutez aux deux côtés de l’équation.
Étape 7.5
La solution complète est le résultat des parties positive et négative de la solution.