Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 2
Utilisez la propriété du produit des logarithmes, .
Étape 3
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Appliquez la propriété distributive.
Étape 3.3
Appliquez la propriété distributive.
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Déplacez à gauche de .
Étape 4.1.3
Multipliez par .
Étape 4.2
Soustrayez de .
Étape 5
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 6
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Élevez à la puissance .
Étape 6.3
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Étape 6.3.1
Soustrayez des deux côtés de l’équation.
Étape 6.3.2
Soustrayez de .
Étape 6.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 6.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 6.6
Simplifiez
Étape 6.6.1
Simplifiez le numérateur.
Étape 6.6.1.1
Élevez à la puissance .
Étape 6.6.1.2
Multipliez .
Étape 6.6.1.2.1
Multipliez par .
Étape 6.6.1.2.2
Multipliez par .
Étape 6.6.1.3
Additionnez et .
Étape 6.6.2
Multipliez par .
Étape 6.7
La réponse finale est la combinaison des deux solutions.
Étape 7
Excluez les solutions qui ne rendent pas vrai.
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :