Calcul infinitésimal Exemples

Resolva para x 2cos(3x)+1=cos(2x)+2cos(x)
Étape 1
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 2
Simplifiez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Utilisez l’identité d’angle triple pour transformer en .
Étape 2.1.2
Appliquez la propriété distributive.
Étape 2.1.3
Multipliez par .
Étape 2.1.4
Multipliez par .
Étape 2.1.5
Utilisez l’identité d’angle double pour transformer en .
Étape 2.1.6
Appliquez la propriété distributive.
Étape 2.1.7
Multipliez par .
Étape 2.1.8
Multipliez par .
Étape 2.2
Simplifiez en ajoutant des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez de .
Étape 2.2.2
Additionnez et .
Étape 3
Factorisez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Factorisez à partir de .
Étape 3.1.4
Factorisez à partir de .
Étape 3.1.5
Factorisez à partir de .
Étape 3.1.6
Factorisez à partir de .
Étape 3.1.7
Factorisez à partir de .
Étape 3.2
Remettez les termes dans l’ordre.
Étape 3.3
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.4
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3.5
Réécrivez comme .
Étape 3.6
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3.6.1.2
Supprimez les parenthèses inutiles.
Étape 3.6.2
Supprimez les parenthèses inutiles.
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 5.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Divisez chaque terme dans par .
Étape 5.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.2.1.2
Divisez par .
Étape 5.2.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 5.2.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.1
Évaluez .
Étape 5.2.5
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5.2.6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.6.1
Supprimez les parenthèses.
Étape 5.2.6.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.6.2.1
Multipliez par .
Étape 5.2.6.2.2
Soustrayez de .
Étape 5.2.7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 5.2.7.2
Remplacez par dans la formule pour la période.
Étape 5.2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5.2.7.4
Divisez par .
Étape 5.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.2.2
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 6.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
La valeur exacte de est .
Étape 6.2.4
La fonction cosinus est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 6.2.5
Soustrayez de .
Étape 6.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2.6.2
Remplacez par dans la formule pour la période.
Étape 6.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.2.6.4
Divisez par .
Étape 6.2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Définissez égal à .
Étape 7.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Ajoutez aux deux côtés de l’équation.
Étape 7.2.2
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 7.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.3.1
La valeur exacte de est .
Étape 7.2.4
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 7.2.5
Soustrayez de .
Étape 7.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 7.2.6.2
Remplacez par dans la formule pour la période.
Étape 7.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 7.2.6.4
Divisez par .
Étape 7.2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 8
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 9
Consolidez les réponses.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Consolidez et en .
, pour tout entier
Étape 9.2
Consolidez et en .
, pour tout entier
, pour tout entier