Calcul infinitésimal Exemples

Resolva para x logarithme népérien de x-2+ logarithme népérien de 2x-3=2 logarithme népérien de x
Étape 1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Utilisez la propriété du produit des logarithmes, .
Étape 1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Appliquez la propriété distributive.
Étape 1.2.2
Appliquez la propriété distributive.
Étape 1.2.3
Appliquez la propriété distributive.
Étape 1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.3.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.2.1
Déplacez .
Étape 1.3.1.2.2
Multipliez par .
Étape 1.3.1.3
Déplacez à gauche de .
Étape 1.3.1.4
Multipliez par .
Étape 1.3.1.5
Multipliez par .
Étape 1.3.2
Soustrayez de .
Étape 2
Simplifiez en déplaçant dans le logarithme.
Étape 3
Pour que l’équation soit égale, l’argument des logarithmes des deux côtés de l’équation doit être égal.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Soustrayez des deux côtés de l’équation.
Étape 4.1.2
Soustrayez de .
Étape 4.2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Définissez égal à .
Étape 4.4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Définissez égal à .
Étape 4.5.2
Ajoutez aux deux côtés de l’équation.
Étape 4.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Excluez les solutions qui ne rendent pas vrai.