Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Supprimez les parenthèses.
Étape 1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Appliquez la propriété distributive.
Étape 2.2.2
Multipliez par en additionnant les exposants.
Étape 2.2.2.1
Déplacez .
Étape 2.2.2.2
Multipliez par .
Étape 2.2.2.2.1
Élevez à la puissance .
Étape 2.2.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2.3
Additionnez et .
Étape 2.2.3
Multipliez par .
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Annulez le facteur commun de .
Étape 2.3.1.1
Annulez le facteur commun.
Étape 2.3.1.2
Réécrivez l’expression.
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Factorisez à partir de .
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Factorisez à partir de .
Étape 3.2.3
Factorisez à partir de .
Étape 3.2.4
Factorisez à partir de .
Étape 3.2.5
Factorisez à partir de .
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à .
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Résolvez pour .
Étape 3.5.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.5.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.5.2.3
Simplifiez le numérateur.
Étape 3.5.2.3.1
Factorisez à partir de .
Étape 3.5.2.3.1.1
Factorisez à partir de .
Étape 3.5.2.3.1.2
Factorisez à partir de .
Étape 3.5.2.3.1.3
Factorisez à partir de .
Étape 3.5.2.3.2
Multipliez par .
Étape 3.5.2.4
La réponse finale est la combinaison des deux solutions.
Étape 3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.