Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
Multipliez par en additionnant les exposants.
Étape 2.2.1.1.1
Déplacez .
Étape 2.2.1.1.2
Multipliez par .
Étape 2.2.1.1.2.1
Élevez à la puissance .
Étape 2.2.1.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.1.1.3
Additionnez et .
Étape 2.2.1.2
Annulez le facteur commun de .
Étape 2.2.1.2.1
Annulez le facteur commun.
Étape 2.2.1.2.2
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Multipliez par .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Factorisez à partir de .
Étape 3.3.1
Factorisez à partir de .
Étape 3.3.2
Factorisez à partir de .
Étape 3.3.3
Factorisez à partir de .
Étape 3.4
Divisez chaque terme dans par et simplifiez.
Étape 3.4.1
Divisez chaque terme dans par .
Étape 3.4.2
Simplifiez le côté gauche.
Étape 3.4.2.1
Annulez le facteur commun de .
Étape 3.4.2.1.1
Annulez le facteur commun.
Étape 3.4.2.1.2
Divisez par .
Étape 3.4.3
Simplifiez le côté droit.
Étape 3.4.3.1
Divisez par .
Étape 3.5
Soustrayez des deux côtés de l’équation.
Étape 3.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.7
Simplifiez .
Étape 3.7.1
Réécrivez comme .
Étape 3.7.1.1
Factorisez à partir de .
Étape 3.7.1.2
Réécrivez comme .
Étape 3.7.2
Extrayez les termes de sous le radical.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :