Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.2
Placez la limite dans l’exposant.
Étape 1.1.2.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.2.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.5
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.2.6
Évaluez les limites en insérant pour toutes les occurrences de .
Étape 1.1.2.6.1
Évaluez la limite de en insérant pour .
Étape 1.1.2.6.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.7
Simplifiez la réponse.
Étape 1.1.2.7.1
Simplifiez chaque terme.
Étape 1.1.2.7.1.1
Multipliez par .
Étape 1.1.2.7.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.1.2.7.1.3
Multipliez par .
Étape 1.1.2.7.1.4
Multipliez par .
Étape 1.1.2.7.2
Soustrayez de .
Étape 1.1.2.7.3
Additionnez et .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
L’élévation de à toute puissance positive produit .
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Évaluez .
Étape 1.3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.3.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3.3.1.3
Remplacez toutes les occurrences de par .
Étape 1.3.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3.4
Multipliez par .
Étape 1.3.3.5
Déplacez à gauche de .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Évaluez .
Étape 1.3.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.5.3
Multipliez par .
Étape 1.3.6
Additionnez et .
Étape 1.3.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2
Placez le terme hors de la limite car il constant par rapport à .
Étape 3
Étape 3.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 3.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 3.1.2
Évaluez la limite du numérateur.
Étape 3.1.2.1
Évaluez la limite.
Étape 3.1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 3.1.2.1.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 3.1.2.1.3
Placez la limite dans l’exposant.
Étape 3.1.2.1.4
Placez le terme hors de la limite car il constant par rapport à .
Étape 3.1.2.1.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 3.1.2.2
Évaluez la limite de en insérant pour .
Étape 3.1.2.3
Simplifiez la réponse.
Étape 3.1.2.3.1
Simplifiez chaque terme.
Étape 3.1.2.3.1.1
Multipliez par .
Étape 3.1.2.3.1.2
Tout ce qui est élevé à la puissance est .
Étape 3.1.2.3.1.3
Multipliez par .
Étape 3.1.2.3.1.4
Multipliez par .
Étape 3.1.2.3.2
Soustrayez de .
Étape 3.1.3
Évaluez la limite de en insérant pour .
Étape 3.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 3.3.1
Différenciez le numérateur et le dénominateur.
Étape 3.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3.3
Évaluez .
Étape 3.3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.3.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.3.3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.3.5
Multipliez par .
Étape 3.3.3.6
Déplacez à gauche de .
Étape 3.3.3.7
Multipliez par .
Étape 3.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.5
Additionnez et .
Étape 3.3.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.4
Divisez par .
Étape 4
Étape 4.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 4.2
Placez la limite dans l’exposant.
Étape 4.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 5
Évaluez la limite de en insérant pour .
Étape 6
Étape 6.1
Associez et .
Étape 6.2
Multipliez par .
Étape 6.3
Tout ce qui est élevé à la puissance est .
Étape 6.4
Multipliez par .
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :