Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Multipliez les deux côtés par .
Étape 2
Étape 2.1
Simplifiez le côté gauche.
Étape 2.1.1
Annulez le facteur commun de .
Étape 2.1.1.1
Annulez le facteur commun.
Étape 2.1.1.2
Réécrivez l’expression.
Étape 2.2
Simplifiez le côté droit.
Étape 2.2.1
Simplifiez .
Étape 2.2.1.1
Appliquez la propriété distributive.
Étape 2.2.1.2
Annulez le facteur commun de .
Étape 2.2.1.2.1
Factorisez à partir de .
Étape 2.2.1.2.2
Annulez le facteur commun.
Étape 2.2.1.2.3
Réécrivez l’expression.
Étape 2.2.1.3
Déplacez à gauche de .
Étape 3
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.1.3
Associez et .
Étape 3.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.1.5
Simplifiez le numérateur.
Étape 3.1.5.1
Déplacez à gauche de .
Étape 3.1.5.2
Soustrayez de .
Étape 3.2
Multipliez les deux côtés de l’équation par .
Étape 3.3
Simplifiez les deux côtés de l’équation.
Étape 3.3.1
Simplifiez le côté gauche.
Étape 3.3.1.1
Simplifiez .
Étape 3.3.1.1.1
Associez.
Étape 3.3.1.1.2
Annulez le facteur commun de .
Étape 3.3.1.1.2.1
Annulez le facteur commun.
Étape 3.3.1.1.2.2
Réécrivez l’expression.
Étape 3.3.1.1.3
Annulez le facteur commun de .
Étape 3.3.1.1.3.1
Annulez le facteur commun.
Étape 3.3.1.1.3.2
Divisez par .
Étape 3.3.2
Simplifiez le côté droit.
Étape 3.3.2.1
Simplifiez .
Étape 3.3.2.1.1
Annulez le facteur commun de .
Étape 3.3.2.1.1.1
Factorisez à partir de .
Étape 3.3.2.1.1.2
Annulez le facteur commun.
Étape 3.3.2.1.1.3
Réécrivez l’expression.
Étape 3.3.2.1.2
Multipliez par .
Étape 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.5
Simplifiez .
Étape 3.5.1
Réécrivez comme .
Étape 3.5.1.1
Factorisez à partir de .
Étape 3.5.1.2
Réécrivez comme .
Étape 3.5.1.3
Ajoutez des parenthèses.
Étape 3.5.2
Extrayez les termes de sous le radical.
Étape 3.6
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.6.3
La solution complète est le résultat des parties positive et négative de la solution.