Calcul infinitésimal Exemples

Encontre a Derivada - d/dx (x^4+3x)^-1
Étape 1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.5
Multipliez par .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.2
Réorganisez les facteurs de .
Étape 3.3
Appliquez la propriété distributive.
Étape 3.4
Multipliez par .
Étape 3.5
Multipliez par .
Étape 3.6
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.1
Factorisez à partir de .
Étape 3.6.1.2
Factorisez à partir de .
Étape 3.6.1.3
Factorisez à partir de .
Étape 3.6.2
Appliquez la règle de produit à .
Étape 3.7
Multipliez par .
Étape 3.8
Factorisez à partir de .
Étape 3.9
Réécrivez comme .
Étape 3.10
Factorisez à partir de .
Étape 3.11
Réécrivez comme .
Étape 3.12
Placez le signe moins devant la fraction.