Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.2
Différenciez.
Étape 1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2
Déplacez à gauche de .
Étape 1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.6
Simplifiez l’expression.
Étape 1.2.6.1
Additionnez et .
Étape 1.2.6.2
Multipliez par .
Étape 1.3
Simplifiez
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Simplifiez le numérateur.
Étape 1.3.3.1
Simplifiez chaque terme.
Étape 1.3.3.1.1
Multipliez par en additionnant les exposants.
Étape 1.3.3.1.1.1
Déplacez .
Étape 1.3.3.1.1.2
Multipliez par .
Étape 1.3.3.1.2
Multipliez par .
Étape 1.3.3.2
Soustrayez de .
Étape 1.3.4
Factorisez à partir de .
Étape 1.3.4.1
Factorisez à partir de .
Étape 1.3.4.2
Factorisez à partir de .
Étape 1.3.4.3
Factorisez à partir de .
Étape 2
Étape 2.1
Définissez le numérateur égal à zéro.
Étape 2.2
Résolvez l’équation pour .
Étape 2.2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.2.2
Définissez égal à .
Étape 2.2.3
Définissez égal à et résolvez .
Étape 2.2.3.1
Définissez égal à .
Étape 2.2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
L’élévation de à toute puissance positive produit .
Étape 3.2.2
Soustrayez de .
Étape 3.2.3
Divisez par .
Étape 3.2.4
La réponse finale est .
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Élevez à la puissance .
Étape 4.2.2
Soustrayez de .
Étape 4.2.3
Divisez par .
Étape 4.2.4
La réponse finale est .
Étape 5
Les droites tangentes horizontales sur la fonction sont .
Étape 6