Calcul infinitésimal Exemples

Encontre a Derivada - d/dx (x^2+2x+1)/(x^2-2x+1)
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.5
Multipliez par .
Étape 2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.7
Additionnez et .
Étape 2.8
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.11
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.12
Multipliez par .
Étape 2.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.14
Additionnez et .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 3.2.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.2.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.2.1
Déplacez .
Étape 3.2.1.2.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.2.2.1
Élevez à la puissance .
Étape 3.2.1.2.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.1.2.2.3
Additionnez et .
Étape 3.2.1.2.3
Déplacez à gauche de .
Étape 3.2.1.2.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.2.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.5.1
Déplacez .
Étape 3.2.1.2.5.2
Multipliez par .
Étape 3.2.1.2.6
Multipliez par .
Étape 3.2.1.2.7
Multipliez par .
Étape 3.2.1.2.8
Multipliez par .
Étape 3.2.1.2.9
Multipliez par .
Étape 3.2.1.3
Soustrayez de .
Étape 3.2.1.4
Additionnez et .
Étape 3.2.1.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.5.1
Multipliez par .
Étape 3.2.1.5.2
Multipliez par .
Étape 3.2.1.6
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 3.2.1.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.7.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.7.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.7.2.1
Déplacez .
Étape 3.2.1.7.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.7.2.2.1
Élevez à la puissance .
Étape 3.2.1.7.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.1.7.2.3
Additionnez et .
Étape 3.2.1.7.3
Multipliez par .
Étape 3.2.1.7.4
Multipliez par .
Étape 3.2.1.7.5
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.7.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.7.6.1
Déplacez .
Étape 3.2.1.7.6.2
Multipliez par .
Étape 3.2.1.7.7
Multipliez par .
Étape 3.2.1.7.8
Multipliez par .
Étape 3.2.1.7.9
Multipliez par .
Étape 3.2.1.7.10
Multipliez par .
Étape 3.2.1.8
Soustrayez de .
Étape 3.2.1.9
Soustrayez de .
Étape 3.2.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Soustrayez de .
Étape 3.2.2.2
Additionnez et .
Étape 3.2.2.3
Additionnez et .
Étape 3.2.2.4
Additionnez et .
Étape 3.2.3
Soustrayez de .
Étape 3.2.4
Additionnez et .
Étape 3.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Factorisez à partir de .
Étape 3.3.1.2
Factorisez à partir de .
Étape 3.3.1.3
Factorisez à partir de .
Étape 3.3.2
Réécrivez comme .
Étape 3.3.3
Remettez dans l’ordre et .
Étape 3.3.4
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3.4
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Réécrivez comme .
Étape 3.4.1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 3.4.1.3
Réécrivez le polynôme.
Étape 3.4.1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 3.4.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.2.2
Multipliez par .
Étape 3.4.3
Utilisez le théorème du binôme.
Étape 3.4.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.4.1
Multipliez par .
Étape 3.4.4.2
Élevez à la puissance .
Étape 3.4.4.3
Multipliez par .
Étape 3.4.4.4
Élevez à la puissance .
Étape 3.4.4.5
Multipliez par .
Étape 3.4.4.6
Élevez à la puissance .
Étape 3.4.5
Factorisez en utilisant le théorème du binôme.
Étape 3.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Factorisez à partir de .
Étape 3.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1
Factorisez à partir de .
Étape 3.5.2.2
Annulez le facteur commun.
Étape 3.5.2.3
Réécrivez l’expression.