Calcul infinitésimal Exemples

Encontre a Derivada - d/dx d/(dx)*(sin(x)^2 base logarithmique 7 de sin(x)^3)
Étape 1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Associez et .
Étape 3.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez par .
Étape 3.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Annulez le facteur commun.
Étape 3.2.2.3
Réécrivez l’expression.
Étape 4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3
Remplacez toutes les occurrences de par .
Étape 5
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez et .
Étape 5.2
Associez et .
Étape 5.3
Déplacez à gauche de .
Étape 5.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Factorisez à partir de .
Étape 5.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1
Factorisez à partir de .
Étape 5.4.2.2
Annulez le facteur commun.
Étape 5.4.2.3
Réécrivez l’expression.
Étape 6
La dérivée de par rapport à est .
Étape 7
Associez et .
Étape 8
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 8.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 8.3
Remplacez toutes les occurrences de par .
Étape 9
Déplacez à gauche de .
Étape 10
La dérivée de par rapport à est .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remettez les termes dans l’ordre.
Étape 11.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Remettez dans l’ordre et .
Étape 11.2.2
Remettez dans l’ordre et .
Étape 11.2.3
Appliquez l’identité d’angle double du sinus.