Calcul infinitésimal Exemples

Encontre a Derivada - d/dx 2xe^(-x)+e^(2x)
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.7
Multipliez par .
Étape 2.8
Déplacez à gauche de .
Étape 2.9
Réécrivez comme .
Étape 2.10
Multipliez par .
Étape 3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.1.3
Remplacez toutes les occurrences de par .
Étape 3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4
Multipliez par .
Étape 3.5
Déplacez à gauche de .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Multipliez par .
Étape 4.3
Remettez les termes dans l’ordre.
Étape 4.4
Remettez les facteurs dans l’ordre dans .