Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Simplifiez l’expression.
Étape 2.4.1
Additionnez et .
Étape 2.4.2
Multipliez par .
Étape 2.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.9
Multipliez par .
Étape 2.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.11
Additionnez et .
Étape 3
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Simplifiez le numérateur.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Multipliez par .
Étape 3.2.1.2
Développez à l’aide de la méthode FOIL.
Étape 3.2.1.2.1
Appliquez la propriété distributive.
Étape 3.2.1.2.2
Appliquez la propriété distributive.
Étape 3.2.1.2.3
Appliquez la propriété distributive.
Étape 3.2.1.3
Simplifiez et associez les termes similaires.
Étape 3.2.1.3.1
Simplifiez chaque terme.
Étape 3.2.1.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.3.1.2
Multipliez par en additionnant les exposants.
Étape 3.2.1.3.1.2.1
Déplacez .
Étape 3.2.1.3.1.2.2
Multipliez par .
Étape 3.2.1.3.1.3
Multipliez par .
Étape 3.2.1.3.1.4
Multipliez par .
Étape 3.2.1.3.1.5
Multipliez par .
Étape 3.2.1.3.1.6
Multipliez par .
Étape 3.2.1.3.2
Additionnez et .
Étape 3.2.2
Soustrayez de .
Étape 3.2.3
Additionnez et .
Étape 3.2.4
Soustrayez de .
Étape 3.3
Factorisez par regroupement.
Étape 3.3.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 3.3.1.1
Factorisez à partir de .
Étape 3.3.1.2
Réécrivez comme plus
Étape 3.3.1.3
Appliquez la propriété distributive.
Étape 3.3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.3.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.3.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.3.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3.4
Simplifiez le dénominateur.
Étape 3.4.1
Factorisez à l’aide de la méthode AC.
Étape 3.4.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.4.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 3.4.2
Appliquez la règle de produit à .
Étape 3.5
Simplifiez le numérateur.
Étape 3.5.1
Factorisez à partir de .
Étape 3.5.2
Réécrivez comme .
Étape 3.5.3
Factorisez à partir de .
Étape 3.5.4
Réécrivez comme .
Étape 3.5.5
Élevez à la puissance .
Étape 3.5.6
Élevez à la puissance .
Étape 3.5.7
Utilisez la règle de puissance pour associer des exposants.
Étape 3.5.8
Additionnez et .
Étape 3.6
Annulez le facteur commun de .
Étape 3.6.1
Annulez le facteur commun.
Étape 3.6.2
Réécrivez l’expression.
Étape 3.7
Placez le signe moins devant la fraction.