Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4
Étape 4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2
Simplifiez l’expression.
Étape 4.2.1
Additionnez et .
Étape 4.2.2
Déplacez à gauche de .
Étape 4.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 6
Étape 6.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.2
Simplifiez l’expression.
Étape 6.2.1
Additionnez et .
Étape 6.2.2
Multipliez par .
Étape 7
Étape 7.1
Appliquez la propriété distributive.
Étape 7.2
Appliquez la propriété distributive.
Étape 7.3
Appliquez la propriété distributive.
Étape 7.4
Appliquez la propriété distributive.
Étape 7.5
Simplifiez le numérateur.
Étape 7.5.1
Associez les termes opposés dans .
Étape 7.5.1.1
Soustrayez de .
Étape 7.5.1.2
Additionnez et .
Étape 7.5.2
Simplifiez chaque terme.
Étape 7.5.2.1
Multipliez par .
Étape 7.5.2.2
Multipliez par .
Étape 7.5.3
Additionnez et .