Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée seconde.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Évaluez .
Étape 1.1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.3
Multipliez par .
Étape 1.1.1.3
Évaluez .
Étape 1.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.3.3
Multipliez par .
Étape 1.1.2
Déterminez la dérivée seconde.
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Évaluez .
Étape 1.1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.2.3
Multipliez par .
Étape 1.1.2.3
Différenciez en utilisant la règle de la constante.
Étape 1.1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.3.2
Additionnez et .
Étape 1.1.3
La dérivée seconde de par rapport à est .
Étape 1.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée seconde égale à .
Étape 1.2.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.2.1
Divisez chaque terme dans par .
Étape 1.2.2.2
Simplifiez le côté gauche.
Étape 1.2.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.2.1.2
Divisez par .
Étape 1.2.2.3
Simplifiez le côté droit.
Étape 1.2.2.3.1
Divisez par .
Étape 2
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Multipliez par .
Étape 4.2.2
La réponse finale est .
Étape 4.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Multipliez par .
Étape 5.2.2
La réponse finale est .
Étape 5.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 6
Le graphe est concave vers le bas lorsque la dérivée seconde est négative et concave vers le haut lorsque la dérivée seconde est positive.
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Étape 7