Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Étape 2.1
Associez et .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
La dérivée de par rapport à est .
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.6
Multipliez par .
Étape 2.7
Associez et .
Étape 2.8
Multipliez par .
Étape 2.9
Associez et .
Étape 2.10
Annulez le facteur commun à et .
Étape 2.10.1
Factorisez à partir de .
Étape 2.10.2
Annulez les facteurs communs.
Étape 2.10.2.1
Factorisez à partir de .
Étape 2.10.2.2
Annulez le facteur commun.
Étape 2.10.2.3
Réécrivez l’expression.
Étape 2.10.2.4
Divisez par .
Étape 3
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Additionnez et .