Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Évaluez .
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.4.3
Multipliez par .
Étape 1.2
Déterminez la dérivée seconde.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.3
Multipliez par .
Étape 1.2.3
Évaluez .
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.3
Multipliez par .
Étape 1.2.4
Évaluez .
Étape 1.2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.4.3
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Factorisez à partir de .
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.2.4
Factorisez à partir de .
Étape 2.2.5
Factorisez à partir de .
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Divisez par .
Étape 2.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.6
Simplifiez
Étape 2.6.1
Simplifiez le numérateur.
Étape 2.6.1.1
Élevez à la puissance .
Étape 2.6.1.2
Multipliez .
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Soustrayez de .
Étape 2.6.1.4
Réécrivez comme .
Étape 2.6.1.4.1
Factorisez à partir de .
Étape 2.6.1.4.2
Réécrivez comme .
Étape 2.6.1.5
Extrayez les termes de sous le radical.
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Simplifiez .
Étape 2.7
Simplifiez l’expression pour résoudre la partie du .
Étape 2.7.1
Simplifiez le numérateur.
Étape 2.7.1.1
Élevez à la puissance .
Étape 2.7.1.2
Multipliez .
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Soustrayez de .
Étape 2.7.1.4
Réécrivez comme .
Étape 2.7.1.4.1
Factorisez à partir de .
Étape 2.7.1.4.2
Réécrivez comme .
Étape 2.7.1.5
Extrayez les termes de sous le radical.
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Simplifiez .
Étape 2.7.4
Remplacez le par .
Étape 2.8
Simplifiez l’expression pour résoudre la partie du .
Étape 2.8.1
Simplifiez le numérateur.
Étape 2.8.1.1
Élevez à la puissance .
Étape 2.8.1.2
Multipliez .
Étape 2.8.1.2.1
Multipliez par .
Étape 2.8.1.2.2
Multipliez par .
Étape 2.8.1.3
Soustrayez de .
Étape 2.8.1.4
Réécrivez comme .
Étape 2.8.1.4.1
Factorisez à partir de .
Étape 2.8.1.4.2
Réécrivez comme .
Étape 2.8.1.5
Extrayez les termes de sous le radical.
Étape 2.8.2
Multipliez par .
Étape 2.8.3
Simplifiez .
Étape 2.8.4
Remplacez le par .
Étape 2.9
La réponse finale est la combinaison des deux solutions.
Étape 3
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Simplifiez chaque terme.
Étape 3.1.2.1.1
Élevez à la puissance .
Étape 3.1.2.1.2
Multipliez par .
Étape 3.1.2.1.3
Élevez à la puissance .
Étape 3.1.2.1.4
Multipliez par .
Étape 3.1.2.1.5
Élevez à la puissance .
Étape 3.1.2.1.6
Multipliez par .
Étape 3.1.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 3.1.2.2.1
Soustrayez de .
Étape 3.1.2.2.2
Additionnez et .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.3
Remplacez dans pour déterminer la valeur de .
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Étape 3.3.2.1
Simplifiez chaque terme.
Étape 3.3.2.1.1
Élevez à la puissance .
Étape 3.3.2.1.2
Multipliez par .
Étape 3.3.2.1.3
Élevez à la puissance .
Étape 3.3.2.1.4
Multipliez par .
Étape 3.3.2.1.5
Élevez à la puissance .
Étape 3.3.2.1.6
Multipliez par .
Étape 3.3.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 3.3.2.2.1
Soustrayez de .
Étape 3.3.2.2.2
Additionnez et .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 7.2.2.1
Soustrayez de .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Étape 9