Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x)=x^3-12x+6
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Multipliez par .
Étape 1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Additionnez et .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.2.3
Multipliez par .
Étape 4.1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Additionnez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Ajoutez aux deux côtés de l’équation.
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Divisez par .
Étape 5.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Réécrivez comme .
Étape 5.5.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Multipliez par .
Étape 10
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 11
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1.1
Élevez à la puissance .
Étape 11.2.1.2
Multipliez par .
Étape 11.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.2.1
Soustrayez de .
Étape 11.2.2.2
Additionnez et .
Étape 11.2.3
La réponse finale est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Multipliez par .
Étape 14
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 15
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1.1
Élevez à la puissance .
Étape 15.2.1.2
Multipliez par .
Étape 15.2.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.2.1
Additionnez et .
Étape 15.2.2.2
Additionnez et .
Étape 15.2.3
La réponse finale est .
Étape 16
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 17