Calcul infinitésimal Exemples

Resolva para x 0.01x^2+x-600>0
Étape 1
Convertissez l’inégalité en une équation.
Étape 2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.3
Additionnez et .
Étape 4.1.4
Réécrivez comme .
Étape 4.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.2
Multipliez par .
Étape 4.3
Simplifiez .
Étape 5
Consolidez les solutions.
Étape 6
Utilisez chaque racine pour créer des intervalles de test.
Étape 7
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.1.2
Remplacez par dans l’inégalité d’origine.
Étape 7.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 7.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.2.2
Remplacez par dans l’inégalité d’origine.
Étape 7.2.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 7.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 7.3.2
Remplacez par dans l’inégalité d’origine.
Étape 7.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 7.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 8
La solution se compose de tous les intervalles vrais.
ou
Étape 9
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 10