Calcul infinitésimal Exemples

Utiliser le u donné pour appliquer le théorème de dérivation des fonctions composées y=u^(3/2) , u=6x+5
,
Étape 1
La règle d’enchaînement indique que la dérivée de par rapport à est égale à la dérivée de par rapport à fois la dérivée de par rapport à .
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Associez et .
Étape 2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Multipliez par .
Étape 2.5.2
Soustrayez de .
Étape 2.6
Associez et .
Étape 3
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Multipliez par .
Étape 3.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Additionnez et .
Étape 4
Multipliez par .
Étape 5
Simplifiez le côté droit .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Factorisez à partir de .
Étape 5.1.2
Annulez le facteur commun.
Étape 5.1.3
Réécrivez l’expression.
Étape 5.2
Multipliez par .
Étape 6
Remplacez la valeur de dans la dérivée .