Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3
Additionnez et .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.6
Simplifiez l’expression.
Étape 3.6.1
Multipliez par .
Étape 3.6.2
Déplacez à gauche de .
Étape 4
Étape 4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4.3
Remplacez toutes les occurrences de par .
Étape 5
Étape 5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 5.3
Simplifiez l’expression.
Étape 5.3.1
Multipliez par .
Étape 5.3.2
Déplacez à gauche de .
Étape 6
Étape 6.1
Appliquez la propriété distributive.
Étape 6.2
Appliquez la propriété distributive.
Étape 6.3
Appliquez la propriété distributive.
Étape 6.4
Associez des termes.
Étape 6.4.1
Multipliez par .
Étape 6.4.2
Multipliez par .
Étape 6.4.3
Multipliez par .
Étape 6.4.4
Multipliez par .
Étape 6.4.5
Multipliez par .
Étape 6.4.6
Soustrayez de .
Étape 6.5
Remettez les termes dans l’ordre.
Étape 6.6
Remettez les facteurs dans l’ordre dans .