Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2
Étape 2.1
Laissez . Déterminez .
Étape 2.1.1
Différenciez .
Étape 2.1.2
Différenciez.
Étape 2.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3
Évaluez .
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.1.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3.5
Multipliez par .
Étape 2.1.3.6
Déplacez à gauche de .
Étape 2.1.3.7
Multipliez par .
Étape 2.1.4
Soustrayez de .
Étape 2.2
Réécrivez le problème en utilisant et .
Étape 3
Étape 3.1
Placez le signe moins devant la fraction.
Étape 3.2
Associez et .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Multipliez par .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Étape 7.1
Associez et .
Étape 7.2
Annulez le facteur commun à et .
Étape 7.2.1
Factorisez à partir de .
Étape 7.2.2
Annulez les facteurs communs.
Étape 7.2.2.1
Factorisez à partir de .
Étape 7.2.2.2
Annulez le facteur commun.
Étape 7.2.2.3
Réécrivez l’expression.
Étape 7.3
Placez le signe moins devant la fraction.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Étape 9.1
Réécrivez comme .
Étape 9.2
Simplifiez
Étape 9.2.1
Multipliez par .
Étape 9.2.2
Multipliez par .
Étape 10
Remplacez toutes les occurrences de par .