Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Réécrivez comme .
Étape 2
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Simplifiez l’expression.
Étape 3.4.1
Additionnez et .
Étape 3.4.2
Multipliez par .
Étape 4
Étape 4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.2
Réorganisez les facteurs de .
Étape 4.3
Appliquez la propriété distributive.
Étape 4.4
Multipliez .
Étape 4.4.1
Multipliez par .
Étape 4.4.2
Multipliez par .
Étape 4.5
Multipliez par .
Étape 4.6
Factorisez à partir de .
Étape 4.7
Factorisez à partir de .
Étape 4.8
Factorisez à partir de .
Étape 4.9
Réécrivez comme .
Étape 4.10
Placez le signe moins devant la fraction.