Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=cos((x-1)/(x+1))
Étape 1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Additionnez et .
Étape 3.4.2
Multipliez par .
Étape 3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.8
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.8.1
Additionnez et .
Étape 3.8.2
Multipliez par .
Étape 3.8.3
Associez et .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Soustrayez de .
Étape 4.2.1.2
Additionnez et .
Étape 4.2.2
Multipliez par .
Étape 4.2.3
Additionnez et .