Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=cos(9x)^x
Étape 1
Utilisez les propriétés des logarithmes pour simplifier la différenciation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez comme .
Étape 1.2
Développez en déplaçant hors du logarithme.
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2
La dérivée de par rapport à est .
Étape 4.3
Remplacez toutes les occurrences de par .
Étape 5
Convertissez de à .
Étape 6
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 6.2
La dérivée de par rapport à est .
Étape 6.3
Remplacez toutes les occurrences de par .
Étape 7
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.2
Multipliez par .
Étape 7.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.4
Multipliez par .
Étape 7.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.6
Multipliez par .
Étape 8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Appliquez la propriété distributive.
Étape 8.2
Supprimez les parenthèses.
Étape 8.3
Remettez les termes dans l’ordre.