Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Additionnez et .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Déplacez à gauche de .
Étape 2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.7
Multipliez par .
Étape 2.8
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.10
Additionnez et .
Étape 2.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.12
Multipliez par .
Étape 2.13
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.14
Multipliez par .
Étape 3
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Appliquez la propriété distributive.
Étape 3.3
Simplifiez le numérateur.
Étape 3.3.1
Simplifiez chaque terme.
Étape 3.3.1.1
Multipliez par .
Étape 3.3.1.2
Multipliez par .
Étape 3.3.1.3
Multipliez par .
Étape 3.3.1.4
Multipliez par .
Étape 3.3.2
Associez les termes opposés dans .
Étape 3.3.2.1
Additionnez et .
Étape 3.3.2.2
Additionnez et .
Étape 3.3.3
Additionnez et .
Étape 3.4
Remettez les termes dans l’ordre.