Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=(x^3+1) logarithme népérien de x^3+1
Étape 1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Additionnez et .
Étape 3.4.2
Associez et .
Étape 3.4.3
Associez et .
Étape 3.4.4
Déplacez à gauche de .
Étape 3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.8
Additionnez et .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remettez les termes dans l’ordre.
Étape 4.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Réécrivez comme .
Étape 4.2.1.2
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la somme des cubes, et .
Étape 4.2.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.3.1
Multipliez par .
Étape 4.2.1.3.2
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2
Multipliez par .
Étape 4.2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Réécrivez comme .
Étape 4.2.3.2
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la somme des cubes, et .
Étape 4.2.3.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.3.1
Multipliez par .
Étape 4.2.3.3.2
Un à n’importe quelle puissance est égal à un.
Étape 4.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Annulez le facteur commun.
Étape 4.2.4.2
Réécrivez l’expression.
Étape 4.2.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Annulez le facteur commun.
Étape 4.2.5.2
Divisez par .