Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=(1/x-arcsin(1/x))^4
Étape 1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Réécrivez comme .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2
La dérivée de par rapport à est .
Étape 3.3
Remplacez toutes les occurrences de par .
Étape 4
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Multipliez par .
Étape 4.3.2
Multipliez par .
Étape 4.3.3
Associez et .
Étape 4.3.4
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 5
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Appliquez la règle de produit à .
Étape 6.2
Un à n’importe quelle puissance est égal à un.