Calcul infinitésimal Exemples

Encontre a Derivada - d/dx f(x)=(1+4x^2)arctan(2x)
Étape 1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Étape 3.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Appliquez la règle de produit à .
Étape 3.2.2
Élevez à la puissance .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Associez et .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.6
Multipliez par .
Étape 3.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.9
Additionnez et .
Étape 3.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.11
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.12
Multipliez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remettez les termes dans l’ordre.
Étape 4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Annulez le facteur commun.
Étape 4.2.2
Réécrivez l’expression.