Calcul infinitésimal Exemples

Encontre a Derivada - d/dx arctan(x-1)
Étape 1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Additionnez et .
Étape 2.4.2
Multipliez par .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remettez les termes dans l’ordre.
Étape 3.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez comme .
Étape 3.2.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Appliquez la propriété distributive.
Étape 3.2.2.2
Appliquez la propriété distributive.
Étape 3.2.2.3
Appliquez la propriété distributive.
Étape 3.2.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.1
Multipliez par .
Étape 3.2.3.1.2
Déplacez à gauche de .
Étape 3.2.3.1.3
Réécrivez comme .
Étape 3.2.3.1.4
Réécrivez comme .
Étape 3.2.3.1.5
Multipliez par .
Étape 3.2.3.2
Soustrayez de .
Étape 3.2.4
Additionnez et .