Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3
Additionnez et .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.6
Simplifiez l’expression.
Étape 3.6.1
Multipliez par .
Étape 3.6.2
Déplacez à gauche de .
Étape 3.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.10
Multipliez par .
Étape 3.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.12
Simplifiez l’expression.
Étape 3.12.1
Additionnez et .
Étape 3.12.2
Déplacez à gauche de .
Étape 4
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Appliquez la propriété distributive.
Étape 4.3
Appliquez la propriété distributive.
Étape 4.4
Associez des termes.
Étape 4.4.1
Multipliez par .
Étape 4.4.2
Multipliez par .
Étape 4.4.3
Multipliez par .
Étape 4.4.4
Multipliez par .
Étape 4.4.5
Multipliez par .
Étape 4.4.6
Multipliez par .
Étape 4.4.7
Multipliez par .
Étape 4.4.8
Multipliez par .
Étape 4.4.9
Additionnez et .
Étape 4.4.10
Soustrayez de .