Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de (2x+1)/((3x-1)(2x+5)) par rapport à x
Étape 1
Écrivez la fraction en utilisant la décomposition en fractions partielles.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Annulez le facteur commun.
Étape 1.1.4.2
Réécrivez l’expression.
Étape 1.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Annulez le facteur commun.
Étape 1.1.5.2
Divisez par .
Étape 1.1.6
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1.1
Annulez le facteur commun.
Étape 1.1.6.1.2
Divisez par .
Étape 1.1.6.2
Appliquez la propriété distributive.
Étape 1.1.6.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.6.4
Déplacez à gauche de .
Étape 1.1.6.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.5.1
Annulez le facteur commun.
Étape 1.1.6.5.2
Divisez par .
Étape 1.1.6.6
Appliquez la propriété distributive.
Étape 1.1.6.7
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.6.8
Déplacez à gauche de .
Étape 1.1.6.9
Réécrivez comme .
Étape 1.1.7
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1
Déplacez .
Étape 1.1.7.2
Déplacez .
Étape 1.1.7.3
Déplacez .
Étape 1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 1.3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Réécrivez l’équation comme .
Étape 1.3.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.3.1.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.3.1
Divisez chaque terme dans par .
Étape 1.3.1.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.3.2.1.1
Annulez le facteur commun.
Étape 1.3.1.3.2.1.2
Divisez par .
Étape 1.3.1.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.3.3.1.1
Divisez par .
Étape 1.3.1.3.3.1.2
Placez le signe moins devant la fraction.
Étape 1.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.1.1
Appliquez la propriété distributive.
Étape 1.3.2.2.1.1.2
Multipliez par .
Étape 1.3.2.2.1.1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.1.3.1
Multipliez par .
Étape 1.3.2.2.1.1.3.2
Associez et .
Étape 1.3.2.2.1.1.3.3
Multipliez par .
Étape 1.3.2.2.1.1.4
Placez le signe moins devant la fraction.
Étape 1.3.2.2.1.1.5
Réécrivez comme .
Étape 1.3.2.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.3.2.2.1.3
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.3.1
Associez et .
Étape 1.3.2.2.1.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.2.2.1.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.4.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.4.1.1.1
Factorisez à partir de .
Étape 1.3.2.2.1.4.1.1.2
Factorisez à partir de .
Étape 1.3.2.2.1.4.1.1.3
Factorisez à partir de .
Étape 1.3.2.2.1.4.1.2
Multipliez par .
Étape 1.3.2.2.1.4.1.3
Soustrayez de .
Étape 1.3.2.2.1.4.2
Déplacez à gauche de .
Étape 1.3.2.2.1.4.3
Placez le signe moins devant la fraction.
Étape 1.3.3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Réécrivez l’équation comme .
Étape 1.3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.3.3.2.2
Soustrayez de .
Étape 1.3.3.3
Multipliez les deux côtés de l’équation par .
Étape 1.3.3.4
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.1.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 1.3.3.4.1.1.1.2
Placez le signe négatif initial dans dans le numérateur.
Étape 1.3.3.4.1.1.1.3
Factorisez à partir de .
Étape 1.3.3.4.1.1.1.4
Annulez le facteur commun.
Étape 1.3.3.4.1.1.1.5
Réécrivez l’expression.
Étape 1.3.3.4.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.1.1.2.1
Factorisez à partir de .
Étape 1.3.3.4.1.1.2.2
Annulez le facteur commun.
Étape 1.3.3.4.1.1.2.3
Réécrivez l’expression.
Étape 1.3.3.4.1.1.3
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.1.1.3.1
Multipliez par .
Étape 1.3.3.4.1.1.3.2
Multipliez par .
Étape 1.3.3.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.4.2.1.1
Multipliez par .
Étape 1.3.3.4.2.1.2
Associez et .
Étape 1.3.3.4.2.1.3
Multipliez par .
Étape 1.3.4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1.1.1
Associez et .
Étape 1.3.4.2.1.1.2
Multipliez par .
Étape 1.3.4.2.1.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.3.4.2.1.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1.1.4.1
Factorisez à partir de .
Étape 1.3.4.2.1.1.4.2
Annulez le facteur commun.
Étape 1.3.4.2.1.1.4.3
Réécrivez l’expression.
Étape 1.3.4.2.1.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1.2.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 1.3.4.2.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.4.2.1.2.3
Soustrayez de .
Étape 1.3.5
Indiquez toutes les solutions.
Étape 1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.4
Multipliez par .
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Additionnez et .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez par .
Étape 5.2
Déplacez à gauche de .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
L’intégrale de par rapport à est .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Différenciez .
Étape 10.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 10.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 10.1.3.3
Multipliez par .
Étape 10.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 10.1.4.2
Additionnez et .
Étape 10.2
Réécrivez le problème en utilisant et .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Multipliez par .
Étape 11.2
Déplacez à gauche de .
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Multipliez par .
Étape 13.2
Multipliez par .
Étape 13.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 13.3.1
Factorisez à partir de .
Étape 13.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 13.3.2.1
Factorisez à partir de .
Étape 13.3.2.2
Annulez le facteur commun.
Étape 13.3.2.3
Réécrivez l’expression.
Étape 14
L’intégrale de par rapport à est .
Étape 15
Simplifiez
Étape 16
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Remplacez toutes les occurrences de par .
Étape 16.2
Remplacez toutes les occurrences de par .