Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.3
Pour retirer le radical du côté gauche de l’équation, élevez les deux côtés de l’équation à la puissance .
Étape 3.4
Simplifiez chaque côté de l’équation.
Étape 3.4.1
Utilisez pour réécrire comme .
Étape 3.4.2
Simplifiez le côté gauche.
Étape 3.4.2.1
Simplifiez .
Étape 3.4.2.1.1
Multipliez les exposants dans .
Étape 3.4.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.2.1.1.2
Annulez le facteur commun de .
Étape 3.4.2.1.1.2.1
Annulez le facteur commun.
Étape 3.4.2.1.1.2.2
Réécrivez l’expression.
Étape 3.4.2.1.2
Simplifiez
Étape 3.4.3
Simplifiez le côté droit.
Étape 3.4.3.1
Simplifiez .
Étape 3.4.3.1.1
Appliquez la règle de produit à .
Étape 3.4.3.1.2
Élevez à la puissance .
Étape 3.5
Résolvez .
Étape 3.5.1
Ajoutez aux deux côtés de l’équation.
Étape 3.5.2
Divisez chaque terme dans par et simplifiez.
Étape 3.5.2.1
Divisez chaque terme dans par .
Étape 3.5.2.2
Simplifiez le côté gauche.
Étape 3.5.2.2.1
Annulez le facteur commun de .
Étape 3.5.2.2.1.1
Annulez le facteur commun.
Étape 3.5.2.2.1.2
Divisez par .
Étape 3.5.2.3
Simplifiez le côté droit.
Étape 3.5.2.3.1
Simplifiez chaque terme.
Étape 3.5.2.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.5.2.3.1.2
Associez.
Étape 3.5.2.3.1.3
Multipliez par .
Étape 3.5.2.3.1.4
Multipliez par .
Étape 4
Replace with to show the final answer.
Étape 5
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Simplifiez chaque terme.
Étape 5.2.3.1
Simplifiez le numérateur.
Étape 5.2.3.1.1
Appliquez la règle de produit à .
Étape 5.2.3.1.2
Élevez à la puissance .
Étape 5.2.3.1.3
Réécrivez comme .
Étape 5.2.3.1.3.1
Utilisez pour réécrire comme .
Étape 5.2.3.1.3.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2.3.1.3.3
Associez et .
Étape 5.2.3.1.3.4
Annulez le facteur commun de .
Étape 5.2.3.1.3.4.1
Annulez le facteur commun.
Étape 5.2.3.1.3.4.2
Réécrivez l’expression.
Étape 5.2.3.1.3.5
Simplifiez
Étape 5.2.3.2
Annulez les facteurs communs.
Étape 5.2.3.2.1
Factorisez à partir de .
Étape 5.2.3.2.2
Annulez le facteur commun.
Étape 5.2.3.2.3
Réécrivez l’expression.
Étape 5.2.4
Simplifiez les termes.
Étape 5.2.4.1
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.4.2
Associez les termes opposés dans .
Étape 5.2.4.2.1
Additionnez et .
Étape 5.2.4.2.2
Additionnez et .
Étape 5.2.4.3
Annulez le facteur commun de .
Étape 5.2.4.3.1
Annulez le facteur commun.
Étape 5.2.4.3.2
Divisez par .
Étape 5.3
Évaluez .
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Appliquez la propriété distributive.
Étape 5.3.4
Annulez le facteur commun de .
Étape 5.3.4.1
Factorisez à partir de .
Étape 5.3.4.2
Annulez le facteur commun.
Étape 5.3.4.3
Réécrivez l’expression.
Étape 5.3.5
Annulez le facteur commun de .
Étape 5.3.5.1
Annulez le facteur commun.
Étape 5.3.5.2
Réécrivez l’expression.
Étape 5.3.6
Simplifiez l’expression.
Étape 5.3.6.1
Soustrayez de .
Étape 5.3.6.2
Additionnez et .
Étape 5.3.6.3
Réécrivez comme .
Étape 5.3.7
Réécrivez comme .
Étape 5.3.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5.3.9
Annulez le facteur commun de .
Étape 5.3.9.1
Annulez le facteur commun.
Étape 5.3.9.2
Réécrivez l’expression.
Étape 5.4
Comme et , est l’inverse de .