Calcul infinitésimal Exemples

Trouver l'intégrale e^(2x)+2+e^(-2x)
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez .
Étape 2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.4
Multipliez par .
Étape 2.2
Réécrivez le problème en utilisant et .
Étape 3
Associez et .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
L’intégrale de par rapport à est .
Étape 6
Appliquez la règle de la constante.
Étape 7
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Différenciez .
Étape 7.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.1.4
Multipliez par .
Étape 7.2
Réécrivez le problème en utilisant et .
Étape 8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Placez le signe moins devant la fraction.
Étape 8.2
Associez et .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 11
L’intégrale de par rapport à est .
Étape 12
Simplifiez
Étape 13
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Remplacez toutes les occurrences de par .
Étape 13.2
Remplacez toutes les occurrences de par .