Calcul infinitésimal Exemples

Trouver l'intégrale cos(2x)^2
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Multipliez par .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Multipliez par .
Étape 6.2
Multipliez par .
Étape 7
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8
Appliquez la règle de la constante.
Étape 9
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Différenciez .
Étape 9.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 9.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 9.1.4
Multipliez par .
Étape 9.2
Réécrivez le problème en utilisant et .
Étape 10
Associez et .
Étape 11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 12
L’intégrale de par rapport à est .
Étape 13
Simplifiez
Étape 14
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Remplacez toutes les occurrences de par .
Étape 14.2
Remplacez toutes les occurrences de par .
Étape 14.3
Remplacez toutes les occurrences de par .
Étape 15
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 15.1.1
Multipliez par .
Étape 15.1.2
Associez et .
Étape 15.2
Appliquez la propriété distributive.
Étape 15.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 15.3.1
Factorisez à partir de .
Étape 15.3.2
Factorisez à partir de .
Étape 15.3.3
Annulez le facteur commun.
Étape 15.3.4
Réécrivez l’expression.
Étape 15.4
Associez et .
Étape 15.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 15.5.1
Multipliez par .
Étape 15.5.2
Multipliez par .
Étape 16
Remettez les termes dans l’ordre.