Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Appliquez l’identité d’angle double du sinus.
Étape 3
Étape 3.1
Factorisez à partir de .
Étape 3.2
Factorisez à partir de .
Étape 3.3
Factorisez à partir de .
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Étape 5.2.1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 5.2.2
Simplifiez le côté droit.
Étape 5.2.2.1
La valeur exacte de est .
Étape 5.2.3
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 5.2.4
Soustrayez de .
Étape 5.2.5
Déterminez la période de .
Étape 5.2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 5.2.5.2
Remplacez par dans la formule pour la période.
Étape 5.2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5.2.5.4
Divisez par .
Étape 5.2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Étape 6.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.2.2
Divisez chaque terme dans par et simplifiez.
Étape 6.2.2.1
Divisez chaque terme dans par .
Étape 6.2.2.2
Simplifiez le côté gauche.
Étape 6.2.2.2.1
Annulez le facteur commun de .
Étape 6.2.2.2.1.1
Annulez le facteur commun.
Étape 6.2.2.2.1.2
Divisez par .
Étape 6.2.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 6.2.4
Simplifiez le côté droit.
Étape 6.2.4.1
La valeur exacte de est .
Étape 6.2.5
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 6.2.6
Simplifiez .
Étape 6.2.6.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.2.6.2
Associez les fractions.
Étape 6.2.6.2.1
Associez et .
Étape 6.2.6.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.6.3
Simplifiez le numérateur.
Étape 6.2.6.3.1
Multipliez par .
Étape 6.2.6.3.2
Soustrayez de .
Étape 6.2.7
Déterminez la période de .
Étape 6.2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 6.2.7.2
Remplacez par dans la formule pour la période.
Étape 6.2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 6.2.7.4
Divisez par .
Étape 6.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 8
Consolidez et en .
, pour tout entier
Étape 9
Utilisez chaque racine pour créer des intervalles de test.
Étape 10
Étape 10.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.1.2
Remplacez par dans l’inégalité d’origine.
Étape 10.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 10.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.2.2
Remplacez par dans l’inégalité d’origine.
Étape 10.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 10.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.3.2
Remplacez par dans l’inégalité d’origine.
Étape 10.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 10.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.4.2
Remplacez par dans l’inégalité d’origine.
Étape 10.4.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 10.5
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.5.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.5.2
Remplacez par dans l’inégalité d’origine.
Étape 10.5.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 10.6
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.6.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.6.2
Remplacez par dans l’inégalité d’origine.
Étape 10.6.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 10.7
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Étape 11
La solution se compose de tous les intervalles vrais.
or or , for any integer
Étape 12
Associez les intervalles.
, pour tout entier
Étape 13
Convertissez l’inégalité en une notation d’intervalle.
Étape 14