Calcul infinitésimal Exemples

Encontre dy/dx 5x^3=-3xy+2
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Multipliez par .
Étape 3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2.3
Réécrivez comme .
Étape 3.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.5
Multipliez par .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Appliquez la propriété distributive.
Étape 3.4.2
Additionnez et .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Réécrivez l’équation comme .
Étape 5.2
Ajoutez aux deux côtés de l’équation.
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Réécrivez l’expression.
Étape 5.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.2.1
Annulez le facteur commun.
Étape 5.3.2.2.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.1.1
Factorisez à partir de .
Étape 5.3.3.1.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.1.2.1
Factorisez à partir de .
Étape 5.3.3.1.1.2.2
Annulez le facteur commun.
Étape 5.3.3.1.1.2.3
Réécrivez l’expression.
Étape 5.3.3.1.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.2.1
Factorisez à partir de .
Étape 5.3.3.1.2.2
Déplacez le moins un du dénominateur de .
Étape 5.3.3.1.3
Réécrivez comme .
Étape 5.3.3.1.4
Multipliez par .
Étape 5.3.3.1.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.5.1
Factorisez à partir de .
Étape 5.3.3.1.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.5.2.1
Factorisez à partir de .
Étape 5.3.3.1.5.2.2
Annulez le facteur commun.
Étape 5.3.3.1.5.2.3
Réécrivez l’expression.
Étape 5.3.3.1.6
Placez le signe moins devant la fraction.
Étape 6
Remplacez par.