Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Différenciez.
Étape 3.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Étape 3.2.1
Associez et .
Étape 3.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.3.2
La dérivée de par rapport à est .
Étape 3.2.3.3
Remplacez toutes les occurrences de par .
Étape 3.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.6
Multipliez par .
Étape 3.2.7
Associez et .
Étape 3.2.8
Multipliez par .
Étape 3.2.9
Associez et .
Étape 3.2.10
Multipliez par .
Étape 3.2.11
Placez le signe moins devant la fraction.
Étape 3.3
Soustrayez de .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Remplacez par.