Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.3
Réécrivez comme .
Étape 2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.5
Déplacez à gauche de .
Étape 2.6
Simplifiez
Étape 2.6.1
Appliquez la règle de produit à .
Étape 2.6.2
Multipliez les exposants dans .
Étape 2.6.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.6.2.2
Multipliez par .
Étape 2.6.3
Réorganisez les facteurs de .
Étape 2.6.4
Multipliez par .
Étape 2.6.5
Factorisez à partir de .
Étape 2.6.5.1
Factorisez à partir de .
Étape 2.6.5.2
Factorisez à partir de .
Étape 2.6.5.3
Factorisez à partir de .
Étape 3
Étape 3.1
Différenciez.
Étape 3.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2
Évaluez .
Étape 3.2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.2.3
Remplacez toutes les occurrences de par .
Étape 3.2.3
Réécrivez comme .
Étape 3.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.5
Déplacez à gauche de .
Étape 3.2.6
Multipliez par .
Étape 3.3
Remettez les termes dans l’ordre.
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Étape 5.1
Multipliez les deux côtés par .
Étape 5.2
Simplifiez
Étape 5.2.1
Simplifiez le côté gauche.
Étape 5.2.1.1
Simplifiez .
Étape 5.2.1.1.1
Annulez le facteur commun de .
Étape 5.2.1.1.1.1
Annulez le facteur commun.
Étape 5.2.1.1.1.2
Réécrivez l’expression.
Étape 5.2.1.1.2
Appliquez la propriété distributive.
Étape 5.2.1.1.3
Multipliez par en additionnant les exposants.
Étape 5.2.1.1.3.1
Déplacez .
Étape 5.2.1.1.3.2
Multipliez par .
Étape 5.2.1.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.2.1.1.5
Remettez dans l’ordre et .
Étape 5.2.2
Simplifiez le côté droit.
Étape 5.2.2.1
Simplifiez .
Étape 5.2.2.1.1
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 5.2.2.1.2
Simplifiez les termes.
Étape 5.2.2.1.2.1
Simplifiez chaque terme.
Étape 5.2.2.1.2.1.1
Multipliez par .
Étape 5.2.2.1.2.1.2
Multipliez par en additionnant les exposants.
Étape 5.2.2.1.2.1.2.1
Déplacez .
Étape 5.2.2.1.2.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.2.2.1.2.1.2.3
Additionnez et .
Étape 5.2.2.1.2.1.3
Multipliez par .
Étape 5.2.2.1.2.1.4
Multipliez par en additionnant les exposants.
Étape 5.2.2.1.2.1.4.1
Déplacez .
Étape 5.2.2.1.2.1.4.2
Multipliez par .
Étape 5.2.2.1.2.1.4.2.1
Élevez à la puissance .
Étape 5.2.2.1.2.1.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.2.2.1.2.1.4.3
Additionnez et .
Étape 5.2.2.1.2.1.5
Multipliez par en additionnant les exposants.
Étape 5.2.2.1.2.1.5.1
Déplacez .
Étape 5.2.2.1.2.1.5.2
Multipliez par .
Étape 5.2.2.1.2.1.5.2.1
Élevez à la puissance .
Étape 5.2.2.1.2.1.5.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.2.2.1.2.1.5.3
Additionnez et .
Étape 5.2.2.1.2.1.6
Multipliez par .
Étape 5.2.2.1.2.1.7
Multipliez par .
Étape 5.2.2.1.2.2
Simplifiez l’expression.
Étape 5.2.2.1.2.2.1
Remettez dans l’ordre et .
Étape 5.2.2.1.2.2.2
Déplacez .
Étape 5.2.2.1.2.2.3
Déplacez .
Étape 5.2.2.1.2.2.4
Déplacez .
Étape 5.2.2.1.2.2.5
Déplacez .
Étape 5.2.2.1.2.2.6
Déplacez .
Étape 5.2.2.1.2.2.7
Déplacez .
Étape 5.2.2.1.2.2.8
Déplacez .
Étape 5.2.2.1.2.2.9
Remettez dans l’ordre et .
Étape 5.3
Résolvez .
Étape 5.3.1
Comme est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 5.3.2
Soustrayez des deux côtés de l’équation.
Étape 5.3.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 5.3.3.1
Soustrayez des deux côtés de l’équation.
Étape 5.3.3.2
Soustrayez des deux côtés de l’équation.
Étape 5.3.3.3
Soustrayez des deux côtés de l’équation.
Étape 5.3.3.4
Soustrayez des deux côtés de l’équation.
Étape 5.3.4
Factorisez à partir de .
Étape 5.3.4.1
Factorisez à partir de .
Étape 5.3.4.2
Factorisez à partir de .
Étape 5.3.4.3
Factorisez à partir de .
Étape 5.3.4.4
Factorisez à partir de .
Étape 5.3.4.5
Factorisez à partir de .
Étape 5.3.5
Réécrivez comme .
Étape 5.3.6
Divisez chaque terme dans par et simplifiez.
Étape 5.3.6.1
Divisez chaque terme dans par .
Étape 5.3.6.2
Simplifiez le côté gauche.
Étape 5.3.6.2.1
Annulez le facteur commun de .
Étape 5.3.6.2.1.1
Annulez le facteur commun.
Étape 5.3.6.2.1.2
Réécrivez l’expression.
Étape 5.3.6.2.2
Annulez le facteur commun de .
Étape 5.3.6.2.2.1
Annulez le facteur commun.
Étape 5.3.6.2.2.2
Divisez par .
Étape 5.3.6.3
Simplifiez le côté droit.
Étape 5.3.6.3.1
Simplifiez chaque terme.
Étape 5.3.6.3.1.1
Annulez le facteur commun de .
Étape 5.3.6.3.1.1.1
Annulez le facteur commun.
Étape 5.3.6.3.1.1.2
Réécrivez l’expression.
Étape 5.3.6.3.1.2
Annulez le facteur commun à et .
Étape 5.3.6.3.1.2.1
Factorisez à partir de .
Étape 5.3.6.3.1.2.2
Annulez les facteurs communs.
Étape 5.3.6.3.1.2.2.1
Annulez le facteur commun.
Étape 5.3.6.3.1.2.2.2
Réécrivez l’expression.
Étape 5.3.6.3.1.3
Placez le signe moins devant la fraction.
Étape 5.3.6.3.1.4
Annulez le facteur commun à et .
Étape 5.3.6.3.1.4.1
Factorisez à partir de .
Étape 5.3.6.3.1.4.2
Annulez les facteurs communs.
Étape 5.3.6.3.1.4.2.1
Annulez le facteur commun.
Étape 5.3.6.3.1.4.2.2
Réécrivez l’expression.
Étape 5.3.6.3.1.5
Placez le signe moins devant la fraction.
Étape 5.3.6.3.1.6
Placez le signe moins devant la fraction.
Étape 5.3.6.3.1.7
Placez le signe moins devant la fraction.
Étape 5.3.6.3.2
Simplifiez les termes.
Étape 5.3.6.3.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 5.3.6.3.2.2
Factorisez à partir de .
Étape 5.3.6.3.2.2.1
Factorisez à partir de .
Étape 5.3.6.3.2.2.2
Factorisez à partir de .
Étape 5.3.6.3.2.2.3
Factorisez à partir de .
Étape 5.3.6.3.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 5.3.6.3.2.4
Factorisez à partir de .
Étape 5.3.6.3.2.4.1
Factorisez à partir de .
Étape 5.3.6.3.2.4.2
Factorisez à partir de .
Étape 5.3.6.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.3.6.3.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 5.3.6.3.4.1
Multipliez par .
Étape 5.3.6.3.4.2
Réorganisez les facteurs de .
Étape 5.3.6.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 5.3.6.3.6
Simplifiez le numérateur.
Étape 5.3.6.3.6.1
Factorisez à partir de .
Étape 5.3.6.3.6.1.1
Factorisez à partir de .
Étape 5.3.6.3.6.1.2
Factorisez à partir de .
Étape 5.3.6.3.6.1.3
Factorisez à partir de .
Étape 5.3.6.3.6.2
Appliquez la propriété distributive.
Étape 5.3.6.3.6.3
Simplifiez
Étape 5.3.6.3.6.3.1
Multipliez par en additionnant les exposants.
Étape 5.3.6.3.6.3.1.1
Déplacez .
Étape 5.3.6.3.6.3.1.2
Multipliez par .
Étape 5.3.6.3.6.3.1.2.1
Élevez à la puissance .
Étape 5.3.6.3.6.3.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.3.6.3.6.3.1.3
Additionnez et .
Étape 5.3.6.3.6.3.2
Multipliez par en additionnant les exposants.
Étape 5.3.6.3.6.3.2.1
Déplacez .
Étape 5.3.6.3.6.3.2.2
Multipliez par .
Étape 5.3.6.3.6.3.2.2.1
Élevez à la puissance .
Étape 5.3.6.3.6.3.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.3.6.3.6.3.2.3
Additionnez et .
Étape 5.3.6.3.7
Associez les numérateurs sur le dénominateur commun.
Étape 5.3.6.3.8
Simplifiez le numérateur.
Étape 5.3.6.3.8.1
Appliquez la propriété distributive.
Étape 5.3.6.3.8.2
Simplifiez
Étape 5.3.6.3.8.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.3.6.3.8.2.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.3.6.3.8.2.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.3.6.3.8.2.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.3.6.3.8.3
Simplifiez chaque terme.
Étape 5.3.6.3.8.3.1
Multipliez par en additionnant les exposants.
Étape 5.3.6.3.8.3.1.1
Déplacez .
Étape 5.3.6.3.8.3.1.2
Multipliez par .
Étape 5.3.6.3.8.3.1.2.1
Élevez à la puissance .
Étape 5.3.6.3.8.3.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.3.6.3.8.3.1.3
Additionnez et .
Étape 5.3.6.3.8.3.2
Multipliez par en additionnant les exposants.
Étape 5.3.6.3.8.3.2.1
Déplacez .
Étape 5.3.6.3.8.3.2.2
Multipliez par .
Étape 5.3.6.3.8.3.3
Multipliez par en additionnant les exposants.
Étape 5.3.6.3.8.3.3.1
Déplacez .
Étape 5.3.6.3.8.3.3.2
Multipliez par .
Étape 6
Remplacez par.