Calcul infinitésimal Exemples

Trouver les points critiques f(x)=(2x^2)/(x^2-1)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.2
Déplacez à gauche de .
Étape 1.1.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.6.1
Additionnez et .
Étape 1.1.3.6.2
Multipliez par .
Étape 1.1.4
Élevez à la puissance .
Étape 1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6
Additionnez et .
Étape 1.1.7
Associez et .
Étape 1.1.8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.8.1
Appliquez la propriété distributive.
Étape 1.1.8.2
Appliquez la propriété distributive.
Étape 1.1.8.3
Appliquez la propriété distributive.
Étape 1.1.8.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.8.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.8.4.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.8.4.1.1.1
Déplacez .
Étape 1.1.8.4.1.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.8.4.1.1.2.1
Élevez à la puissance .
Étape 1.1.8.4.1.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.8.4.1.1.3
Additionnez et .
Étape 1.1.8.4.1.2
Multipliez par .
Étape 1.1.8.4.1.3
Multipliez par .
Étape 1.1.8.4.1.4
Multipliez par .
Étape 1.1.8.4.1.5
Multipliez par .
Étape 1.1.8.4.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.8.4.2.1
Soustrayez de .
Étape 1.1.8.4.2.2
Additionnez et .
Étape 1.1.8.5
Placez le signe moins devant la fraction.
Étape 1.1.8.6
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.8.6.1
Réécrivez comme .
Étape 1.1.8.6.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.1.8.6.3
Appliquez la règle de produit à .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Divisez par .
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.2.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Définissez égal à .
Étape 3.2.2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Définissez le égal à .
Étape 3.2.2.2.2
Soustrayez des deux côtés de l’équation.
Étape 3.2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Définissez égal à .
Étape 3.2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.2.1
Définissez le égal à .
Étape 3.2.3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 3.2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3.3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.2.2
Soustrayez de .
Étape 4.1.2.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Divisez par .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Élevez à la puissance .
Étape 4.2.2.2
Soustrayez de .
Étape 4.2.2.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 4.3
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Un à n’importe quelle puissance est égal à un.
Étape 4.3.2.2
Soustrayez de .
Étape 4.3.2.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 4.4
Indiquez tous les points.
Étape 5