Calcul infinitésimal Exemples

Trouver les points critiques f(x)=1/(x^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Réécrivez comme .
Étape 1.1.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.1.1.2.2
Multipliez par .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.3.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.2.1
Associez et .
Étape 1.1.3.2.2
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Indéfini
Étape 5
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé