Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Additionnez et .
Étape 1.1.4.2
Remettez les termes dans l’ordre.
Étape 1.1.4.3
Remettez les facteurs dans l’ordre dans .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez à partir de .
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.4.2.2
Simplifiez .
Étape 2.4.2.2.1
Réécrivez comme .
Étape 2.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Étape 2.5.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.5.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.5.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 2.6
Définissez égal à et résolvez .
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Soustrayez des deux côtés de l’équation.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.2
Tout ce qui est élevé à la puissance est .
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.2
Soustrayez de .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez chaque terme.
Étape 4.2.2.1
Élevez à la puissance .
Étape 4.2.2.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.2.2.3
Associez et .
Étape 4.3
Indiquez tous les points.
Étape 5