Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2.3
Associez et .
Étape 1.1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.2.5
Simplifiez le numérateur.
Étape 1.1.2.5.1
Multipliez par .
Étape 1.1.2.5.2
Soustrayez de .
Étape 1.1.2.6
Placez le signe moins devant la fraction.
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3.4
Associez et .
Étape 1.1.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.3.6
Simplifiez le numérateur.
Étape 1.1.3.6.1
Multipliez par .
Étape 1.1.3.6.2
Soustrayez de .
Étape 1.1.3.7
Placez le signe moins devant la fraction.
Étape 1.1.3.8
Associez et .
Étape 1.1.3.9
Multipliez par .
Étape 1.1.3.10
Multipliez par .
Étape 1.1.3.11
Déplacez à gauche de .
Étape 1.1.3.12
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.4.2
Multipliez par .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 2.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.2.4
n’a pas de facteur hormis et .
est un nombre premier
Étape 2.2.5
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.2.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.2.8
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Simplifiez chaque terme.
Étape 2.3.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3.2.1.2
Annulez le facteur commun de .
Étape 2.3.2.1.2.1
Annulez le facteur commun.
Étape 2.3.2.1.2.2
Réécrivez l’expression.
Étape 2.3.2.1.3
Annulez le facteur commun de .
Étape 2.3.2.1.3.1
Factorisez à partir de .
Étape 2.3.2.1.3.2
Annulez le facteur commun.
Étape 2.3.2.1.3.3
Réécrivez l’expression.
Étape 2.3.2.1.4
Divisez par .
Étape 2.3.2.1.5
Simplifiez
Étape 2.3.2.1.6
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3.2.1.7
Annulez le facteur commun de .
Étape 2.3.2.1.7.1
Annulez le facteur commun.
Étape 2.3.2.1.7.2
Réécrivez l’expression.
Étape 2.3.2.1.8
Annulez le facteur commun de .
Étape 2.3.2.1.8.1
Annulez le facteur commun.
Étape 2.3.2.1.8.2
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Multipliez .
Étape 2.3.3.1.1
Multipliez par .
Étape 2.3.3.1.2
Multipliez par .
Étape 2.4
Soustrayez des deux côtés de l’équation.
Étape 3
Étape 3.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Étape 3.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.1.2
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.3
Résolvez .
Étape 3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez les deux côtés de l’équation à la puissance .
Étape 3.3.2
Simplifiez chaque côté de l’équation.
Étape 3.3.2.1
Utilisez pour réécrire comme .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Simplifiez .
Étape 3.3.2.2.1.1
Appliquez la règle de produit à .
Étape 3.3.2.2.1.2
Élevez à la puissance .
Étape 3.3.2.2.1.3
Multipliez les exposants dans .
Étape 3.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.2.1.3.2
Annulez le facteur commun de .
Étape 3.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 3.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.3.3
Résolvez .
Étape 3.3.3.1
Divisez chaque terme dans par et simplifiez.
Étape 3.3.3.1.1
Divisez chaque terme dans par .
Étape 3.3.3.1.2
Simplifiez le côté gauche.
Étape 3.3.3.1.2.1
Annulez le facteur commun de .
Étape 3.3.3.1.2.1.1
Annulez le facteur commun.
Étape 3.3.3.1.2.1.2
Divisez par .
Étape 3.3.3.1.3
Simplifiez le côté droit.
Étape 3.3.3.1.3.1
Divisez par .
Étape 3.3.3.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3.3.3
Simplifiez .
Étape 3.3.3.3.1
Réécrivez comme .
Étape 3.3.3.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.3.3.3.3
Plus ou moins est .
Étape 3.4
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.5
Résolvez .
Étape 3.5.1
Pour retirer le radical du côté gauche de l’équation, élevez les deux côtés de l’équation à la puissance .
Étape 3.5.2
Simplifiez chaque côté de l’équation.
Étape 3.5.2.1
Utilisez pour réécrire comme .
Étape 3.5.2.2
Simplifiez le côté gauche.
Étape 3.5.2.2.1
Simplifiez .
Étape 3.5.2.2.1.1
Appliquez la règle de produit à .
Étape 3.5.2.2.1.2
Élevez à la puissance .
Étape 3.5.2.2.1.3
Multipliez les exposants dans .
Étape 3.5.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.5.2.2.1.3.2
Annulez le facteur commun de .
Étape 3.5.2.2.1.3.2.1
Annulez le facteur commun.
Étape 3.5.2.2.1.3.2.2
Réécrivez l’expression.
Étape 3.5.2.3
Simplifiez le côté droit.
Étape 3.5.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.5.3
Résolvez .
Étape 3.5.3.1
Divisez chaque terme dans par et simplifiez.
Étape 3.5.3.1.1
Divisez chaque terme dans par .
Étape 3.5.3.1.2
Simplifiez le côté gauche.
Étape 3.5.3.1.2.1
Annulez le facteur commun de .
Étape 3.5.3.1.2.1.1
Annulez le facteur commun.
Étape 3.5.3.1.2.1.2
Divisez par .
Étape 3.5.3.1.3
Simplifiez le côté droit.
Étape 3.5.3.1.3.1
Divisez par .
Étape 3.5.3.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.5.3.3
Simplifiez .
Étape 3.5.3.3.1
Réécrivez comme .
Étape 3.5.3.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Réécrivez comme .
Étape 4.2.2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.3
Annulez le facteur commun de .
Étape 4.2.2.1.3.1
Annulez le facteur commun.
Étape 4.2.2.1.3.2
Réécrivez l’expression.
Étape 4.2.2.1.4
Évaluez l’exposant.
Étape 4.2.2.1.5
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.2.2.1.6
Simplifiez le dénominateur.
Étape 4.2.2.1.6.1
Réécrivez comme .
Étape 4.2.2.1.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.6.3
Annulez le facteur commun de .
Étape 4.2.2.1.6.3.1
Annulez le facteur commun.
Étape 4.2.2.1.6.3.2
Réécrivez l’expression.
Étape 4.2.2.1.6.4
L’élévation de à toute puissance positive produit .
Étape 4.2.2.1.6.5
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 4.2.2.1.7
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 4.2.2.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 4.3
Indiquez tous les points.
Étape 5