Calcul infinitésimal Exemples

Trouver les points critiques sin(x)^2
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Réorganisez les facteurs de .
Étape 1.1.3.2
Remettez dans l’ordre et .
Étape 1.1.3.3
Remettez dans l’ordre et .
Étape 1.1.3.4
Appliquez l’identité d’angle double du sinus.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
La valeur exacte de est .
Étape 2.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Divisez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1
Annulez le facteur commun.
Étape 2.4.2.1.2
Divisez par .
Étape 2.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Divisez par .
Étape 2.5
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 2.6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.1
Multipliez par .
Étape 2.6.1.2
Additionnez et .
Étape 2.6.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.1
Divisez chaque terme dans par .
Étape 2.6.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.1.1
Annulez le facteur commun.
Étape 2.6.2.2.1.2
Divisez par .
Étape 2.7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 2.7.2
Remplacez par dans la formule pour la période.
Étape 2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.7.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.4.1
Annulez le facteur commun.
Étape 2.7.4.2
Divisez par .
Étape 2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 2.9
Consolidez les réponses.
, pour tout entier
, pour tout entier
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
La valeur exacte de est .
Étape 4.1.2.2
L’élévation de à toute puissance positive produit .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
La valeur exacte de est .
Étape 4.2.2.2
Un à n’importe quelle puissance est égal à un.
Étape 4.3
Indiquez tous les points.
, pour tout entier
, pour tout entier
Étape 5