Calcul infinitésimal Exemples

Trouver la tangente horizontale f(x)=x/(x^2+9)
Étape 1
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.2
Multipliez par .
Étape 1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Additionnez et .
Étape 1.2.6.2
Multipliez par .
Étape 1.3
Élevez à la puissance .
Étape 1.4
Élevez à la puissance .
Étape 1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.6
Additionnez et .
Étape 1.7
Soustrayez de .
Étape 2
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez le numérateur égal à zéro.
Étape 2.2
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Divisez chaque terme dans par .
Étape 2.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2.2.2.2
Divisez par .
Étape 2.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.3.1
Divisez par .
Étape 2.2.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Réécrivez comme .
Étape 2.2.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Élevez à la puissance .
Étape 3.2.1.2
Additionnez et .
Étape 3.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Factorisez à partir de .
Étape 3.2.2.2.2
Annulez le facteur commun.
Étape 3.2.2.2.3
Réécrivez l’expression.
Étape 3.2.3
La réponse finale est .
Étape 4
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Élevez à la puissance .
Étape 4.2.1.2
Additionnez et .
Étape 4.2.2
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Factorisez à partir de .
Étape 4.2.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.2.1
Factorisez à partir de .
Étape 4.2.2.1.2.2
Annulez le facteur commun.
Étape 4.2.2.1.2.3
Réécrivez l’expression.
Étape 4.2.2.2
Placez le signe moins devant la fraction.
Étape 4.2.3
La réponse finale est .
Étape 5
Les droites tangentes horizontales sur la fonction sont .
Étape 6