Calcul infinitésimal Exemples

Trouver la tangente horizontale y=(x-1)/(x+1)
Étape 1
Définissez en fonction de .
Étape 2
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Additionnez et .
Étape 2.2.4.2
Multipliez par .
Étape 2.2.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.8
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.8.1
Additionnez et .
Étape 2.2.8.2
Multipliez par .
Étape 2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Soustrayez de .
Étape 2.3.2.1.2
Additionnez et .
Étape 2.3.2.2
Multipliez par .
Étape 2.3.2.3
Additionnez et .
Étape 3
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le numérateur égal à zéro.
Étape 3.2
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 4
Aucune solution n’est trouvée en définissant la dérivée égale à , si bien qu’il n’y a pas de droite tangente horizontale.
Aucune tangente horizontale n’a été trouvée
Étape 5