Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Définissez en fonction de .
Étape 2
Étape 2.1
Différenciez.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 3
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Simplifiez chaque terme.
Étape 4.2.1.1
Élevez à la puissance .
Étape 4.2.1.2
Élevez à la puissance .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.1.4
Multipliez par .
Étape 4.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.2.1
Additionnez et .
Étape 4.2.2.2
Soustrayez de .
Étape 4.2.3
La réponse finale est .
Étape 5
La droite tangente horizontale sur la fonction est .
Étape 6